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ABSTRACT: BackgroundBackground: Pediatric-onset Huntington’s disease (POHD) exhibits a phenotype different from
adult-onset HD (AOHD), with hypokinetic movement disorders (eg, rigidity, bradykinesia, and dystonia) rather
than chorea typical of AOHD.
ObjectivesObjectives: The aim was to identify pathophysiology-based biomarkers specific to POHD (≥60 CAG repeats).
MethodsMethods: Simultaneous hybrid imaging using [18F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography
plus magnetic resonance imaging (FDG-PET/MRI) and clinical assessment using standardized Huntington’s
disease (HD) scales were employed. Exploratory longitudinal analyses were also performed.
ResultsResults: Striatal volume loss was remarkable and more severe in POHD (n = 5) than in AOHD (n = 14).
Widespread, significantly altered glucose metabolism occurred in several different POHD cortical areas and
thalamus, but not AOHD cortex, consistent with differences in clinical progression.
ConclusionsConclusions: POHD patients’ brains exhibited distinct morphologic and metabolic traits compared to AOHD
patients’ brains, with longitudinal changes mirroring clinical progression. Hybrid FDG-PET/MRI highlighted a
variable regional brain dysfunction in vivo, as a biological consequence of highly expanded CAG repeats.
Findings provide further evidence that POHD is a distinct disease from AOHD.

Huntington’s disease (HD) is caused by expanded CAG repeat
mutations (>35 CAGs) in the huntingtin gene (HTT).1,2 Patients
usually present in adulthood, but symptoms manifest before
21 years in 4% to 10% of cases (juvenile-onset HD [JOHD]).3,4

Expanded CAG repeat numbers overlap between adult-onset
HD (AOHD) and JOHD,5 but rare occurrences of highly
expanded repeats (>55–60 CAG) are clearly associated with the
rarest pediatric-onset HD (POHD; age of onset <18 years)
form.4,6 Motor manifestations of POHD, namely hypokinetic
movement disorders with variable rigidity, bradykinesia, and
dystonia, are different from typical AOHD symptoms (ie,
chorea).3–6 POHD also differs from JOHD and AOHD in

terms of lower levels of glucose transporters, abnormal expres-
sion of markers of energy metabolism, altered cortical mito-
chondrial machinery, and abnormal patterns of brain
dysfunction and degeneration, highlighting biological mecha-
nisms specific to this form of the disease.6,7 POHD may
therefore require a different treatment approach and the iden-
tification of distinct biomarkers for monitoring disease pro-
gression. Imaging studies integrating glucose metabolism and
regional brain volumes could identify such POHD-specific
biomarkers for use in HD trials. We therefore compared clini-
cal characteristics of POHD and AOHD patients alongside
regional brain volumes and glucose metabolism, using simultaneous
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hybrid [18F]fluoro-2-deoxy-D-glucose (FDG) positron emission
tomography and magnetic resonance imaging (PET/MRI).

Patients and Methods
Study Design
RAREST-JHD was a 3-year prospective study (June 19, 2019,
to October 1, 2022)8 assessing clinical, genetic, and imaging
characteristics of young HD patients to identify potential bio-
markers of diseases.6,7

Patients
We included adult patients (aged >18 years) previously diag-
nosed with POHD (adolescent onset) with a HTT mutation
>60 CAG repeats and adult patients previously diagnosed
with AOHD (adult onset) with a HTT mutation <60 CAG
repeats. All patients were included in the ENROLL-HD
platform, a worldwide HD observational initiative.9

RAREST-JHD excluded patients with severe psychiatric
manifestations and included AOHD patients matched for dis-
ease duration.

Baseline Clinical Assessment
All patients underwent neurological and neuropsychological
evaluation using the Unified Huntington’s Disease Rating
Scale,10 according to the ENROLL-HD protocol9

(Supplementary Material in Data S1).

Baseline Image Acquisition
All patients underwent hybrid [18F]FDG-PET/MRI on a 3T
scanner (Siemens Biograph mMR, Siemens Healthcare,
Erlangen, Germany) at the University of Catanzaro, Italy
(Supplementary Material in Data S1).

Longitudinal Follow-Up
Patients were followed up annually for 2 years. All baseline clini-
cal and imaging assessments were repeated at follow-up visits and
performed as closely together as possible. Longitudinal changes
in clinical and imaging variables (cortical thickness, subcortical
volumes, PVC (Partial Volume Correction) -uptake values) were
calculated as a percentage of baseline value according to the fol-
lowing formula:

Yearly%change¼ 100� valuetp1�valuetp2
valuetp1

� �

� 12
follow�up duration in months

Due to the small sample size, longitudinal analyses should be
considered exploratory only.

Statistical Analysis
Statistics was performed using R (version 4.0.2). Sex distributions
were compared using χ2, and continuous measures were compared
using t-test or Mann–Whitney U-test, according to Shapiro’s nor-
mality test. Structural and metabolic measures were compared
using analysis of covariance, with age, sex, and intracranial volume
as covariates. Multiple comparisons were accounted for using false
discovery rate (FDR, adjusted PFDR <0.05). Post hoc Spearman’s
correlations investigated associations between clinical scores and
PET/MRI measures (adjusted PFDR <0.05).

Results
Patients
We screened 21 patients for eligibility, and 2 were excluded due
to HTT mutation homozygosity. Five patients met the inclusion
criteria for POHD, and 14 met the inclusion criteria for AOHD
(cross-sectional cohort, N = 19). Of these, 3 POHD and
6 AOHD patients completed follow-up (longitudinal cohort,
n = 9). Mean follow-up duration was 17 months.

Baseline demographics and clinical characteristics showed
significant difference in age, age of onset, CAG repeats, and
CAG-age-product (CAP) score between POHD and AOHD
cross-sectional cohorts (Table 1). Total Motor Scores (TMS) and
cognitive scores were not statistically different between the
2 cohorts, indicating similar clinical severity. However, baseline
parkinsonism subitem scores were higher in JOHD than AOHD
(median [range]: 4.0 [2–4] and 2.0 [0–3], respectively,
P = 0.003).

Demographic and clinical characteristics for the longitudinal
cohort are presented in Table S1. The JOHD and AOHD
groups exhibited similar rates of disease progression, as measured
by changes in TMS, and Total Functional Capacity (TFC), Inde-
pendence Scale, and Mini-Mental State Examination scores at
follow-up (Table S1).

Brain Volume and Glucose
Uptake at Baseline
Total intracranial volume (1.42 � 0.16 vs. 1.35 � 0.10 � 106 mm3)
and whole-brain FDG uptake (0.61 � 0.04 vs. 0.59 � 0.03 �
106 mm3) did not differ between POHD and AOHD, respectively.
When all patients were considered, age correlated positively with
increasing striatal volume (left ρ = 0.68, right ρ = 0.64), reflecting
early striatal volume loss in POHD. Conversely, age correlated neg-
atively with cortical thickness in frontoparietal regions, namely the
right frontal pole (ρ = �0.69), rostral middle frontal gyrus
(ρ = �0.75), left pars orbitalis (ρ = �0.69), and bilateral post-
central gyri (left ρ = �0.74, right ρ = �0.72).

Volumes of striatal structures (putamen, caudate, nucleus
accumbens, and globus pallidus) were significantly lower in
POHD versus AOHD patients (Fig. 1A), paralleled by significantly
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lower glucose metabolism, as measured by FDG uptake (Fig. 1B).
In contrast, FDG uptake was higher in the bilateral thalamus of
POHD versus AOHD patients (Fig. 1B).

The POHD cohort had a relatively preserved brain cortex,
compared with AOHD. Cortical thickness was significantly
lower in AOHD versus POHD patients in bilateral insula and
frontal lobe regions, namely the right rostral-anterior cingulate,
frontal pole, and lateral orbitofrontal cortex (Fig. 1C).

A comparison of regional glucose metabolism showed signifi-
cantly lower FDG uptake in bilateral entorhinal cortices in
POHD versus AOHD patients (Fig. 1D). In contrast, AOHD
patients had a significantly lower FDG uptake than POHD
patients only in specific cortical regions (left inferior parietal
gyrus and left cingulate gyrus).

Brain Volume and Glucose
Uptake at Follow-Up
Annualized rates of volume loss were greater in all 3 POHD patients
compared to the AOHD cohort in several regions (Figure S1), par-
ticularly the parietal and occipital lobes (up to 15% reduction in cor-
tical thickness) and the caudate (up to 30% volume reduction). Both

groups demonstrated ventricular enlargement, albeit more promi-
nently in POHD (+30%) than AOHD (+10%).

Patients with AOHD exhibited widespread reduction in FDG
uptake in cortical regions (annualized percentage change, �5%),
whereas subcortical regions varied little. Exceptions were the
right pallidum and bilateral hippocampi, with annualized
increases in FDG uptake of �3% to 4%. In marked contrast,
patients with POHD had highly variable annualized changes in
FDG uptake, with striking decreases and increases across wide-
spread cortical (�40% to +40%) and subcortical (�20% to
+20%) structures (Figure S2).

Glucose Uptake in POHD and
Relationship with Clinical Scores
Although brain volume changes were relatively similar among
the 3 POHD patients, alterations in glucose metabolism were
highly individualized, with greater annual changes in metabolism
linked to more severe worsening in annualized dystonia, parkin-
sonism, and independence scores.

POHD patient 1 exhibited a bilateral mild decrease in FDG
uptake in the fronto-occipital cortex and caudate nuclei but an

TABLE 1 Baseline demographic and clinical characteristics of the cross-sectional cohort (N = 19)

Items POHD (n = 5) AOHD (n = 14) P-value

Baseline

Age (years), mean � SD [range] 24.2 � 5.7 [20–34] 45.1 � 10.7 [28–62] <0.001a

Sex (n females) 4 8 0.02b

Age at onset (years), median [range] 16.0 [15–18] 42.5 [21–54] <0.001c

Disease duration (years), median [range] 5 [4–18] 5 [1–13] 0.57c

HD stage, median [range] 3 [2–4] 2 [1–3] 0.07b

CAG repeats (n), median [range] 60 [59–67] 43 [40–56] 0.001c

CAP score, median [range] 633.6 [558.8–897.6] 465.3 [362.6–739.2] 0.004c

TMS, median [range] 42.0 [32–93] 29.5 [11–73] 0.23c

TFC Scale score, mean � SD [range] 5.5 � 3.1 [1–8] 9.9 � 2.5 [4–13] 0.06a

IS score, median [range] 70.0 [40–75] 80.0 [45–100] 0.67c

MMSE score, median [range] 25.0 [24–26] 26.5 [18–29] 0.34c

SDMT score, mean � SD [range] 21.3 � 4.2 [18–26] 27.6 � 13.4 [9–51] 0.19a

SVF score, mean � SD [range] 12.0 � 3.6 [9–16] 12.6 � 5.1 [7–21] 0.81a

SCN score, mean � SD [range] 52.0 � 2.6 [50–55] 49.2 � 20.0 [22–78] 0.62a

SWR score, mean � SD [range] 75.7 � 1.5 [74–77] 65.0 � 25.2 [27–103] 0.13a

Note: p-values are in bold.
Higher scores on the TMS indicate more severe motor impairment, whereas higher sores for TFC, IS, MMSE, SDMT, SVF, SCN, and SWR indicate better functional
capacity, independence, or cognitive performance.
aNormally distributed variables are reported as mean � SD and range, along with P-values relative to t-tests.
bP-values from χ2 test.
cNonnormally distributed variables are reported as median and range, along with P-values from Mann–Whitney U-test.
Abbreviations: POHD, pediatric-onset Huntington’s disease; AOHD, adult-onset Huntington’s disease; SD, standard deviation; HD, Huntington’s disease; CAP, CAG-
age-product; TMS, Total Motor Scale; TFC, Total Functional Capacity Scale; IS, Independence Scale; MMSE, Mini-Mental State Examination; SDMT, Symbol Digit
Modality Test; SVF, Semantic Verbal Fluency; SCN, Stroop Color Naming; SWR, Stroop Word Reading; TMS, Total Motor Score.
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increase in temporoparietal lobes and the left thalamus
(Figure S2); TMS and TFC scores were stable over 15 months.

POHD patient 2 exhibited asymmetric glucose metabolism
with severely decreased FDG uptake in the left hemisphere,
including the caudate, somatosensorial, and temporal regions.
Multiple areas showed an increase in FDG uptake, most notably
throughout the right medial hemisphere (Figure S2). They had a
9.5% increase in annualized TMS score, driven mainly by gait
and parkinsonism score increases (+37.5%), with predominant
rigidity on the right side.

POHD patient 3 exhibited severe reduced glucose metabolism
in the somatosensory and temporo-occipital regions and the left
striatum, and elevated activity in the frontoparietal regions and
the left hippocampus. Their annualized TMS increased by
14.2%, driven mainly by a significant increase in dystonia score
(+133.8%); their annualized TFC score decreased by 11.4%.

Discussion
A major unmet need in POHD is establishing a link between bio-
logical findings and clinical evidence in vivo.11 We performed a
comprehensive and simultaneous baseline evaluation of the mor-
phologic and metabolic traits in POHD and AOHD brains, and a
longitudinal analysis in a subset of patients. Although previous
studies have correlated longitudinal striatal volume loss with clini-
cal progression,12,13 ours is the first to show that both baseline and
longitudinal changes, in striatal and nonstriatal regions, may
explain clinical differences between POHD and AOHD.

Consistent with a significantly lower striatal volume, striatal
glucose metabolism was significantly lower in POHD versus
AOHD at baseline, whereas FDG uptake was highly variable in
POHD cortical regions, with significantly higher and lower
uptake observed, compared to AOHD, depending on region.

FIG. 1. FDG-PET/MRI findings in POHD (n = 5) and AOHD (n = 14) patients. Color coding: red = striatum, blue = pallidus, light
blue = thalamus, yellow = insula, pink = right frontal, green = entorhinal, orange = inferior parietal, brown = cingulate. Boxes, upper and
lower quartiles; lines, medians; whiskers, upper and lower extremes; dots, outliers. t-Test and false discovery rate correction for multiple
comparisons. AOHD, adult-onset Huntington’s disease; FDG-PET/MRI, [18F]fluoro-2-deoxy-D-glucose positron emission tomography
magnetic resonance imaging; POHD, pediatric-onset Huntington’s disease. (A) Subcortical volume. (B) Subcortical FDG-PET. (C) Cortical
thickness. (D) Cortical FDG-PET.
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In addition to altered glucose metabolism resulting from
abnormally low levels of GLUT-1 transporters,7 protein frag-
ments with long polyQ tracts in HTT-Exon-1 lead to the forma-
tion of intranuclear inclusions during neurogenesis, affecting
mitochondrial function13 and brain processes such as neuro-
development, transcriptomic profile, and reduced levels of synap-
tic and metabolic genes and of cerebral receptors.14–17

An unexpected finding was the significantly higher glucose
metabolism in the thalamus of POHD patients at baseline com-
pared with AOHD. A thalamic glucose hypermetabolism increase
before symptom onset, with a subsequent decrease after pheno-
conversion, has been described in AOHD as a compensatory pro-
cess.18 Our evidence of a still-strong thalamic hypermetabolism in
symptomatic POHD patients represents a unique description of
the disease and may reflect an inability to compensate for early,
severe, and fast striatal volume loss. Further, the presence of spe-
cific lateralized regional patterns of altered glucose metabolism in
POHD cortex suggests the presence of dysfunctional processes,
which may influence the particular features of POHD, including
its distinct clinical manifestations and disease progression.6,12,13

Our main limitation is the small sample size, especially the lon-
gitudinal cohort. However, HD is rare, and pediatric cases are
exceptionally rare and progress rapidly, making large-scale recruit-
ment over a limited time frame challenging. Our strict inclusion
criteria (≥60 CAG repeats and longitudinal clinical data available
from ENROLL-HD) further limited enrolment. Another possible
limitation is the difference in the CAP score between POHD and
AOHD cohorts. The larger baseline CAP score in POHD might
theoretically affect the difference in neuropathological traits with
AOHD. However, all clinical evaluations showed a similar clinical
condition at baseline in motor, cognitive, and independence items
between the 2 cohorts.

Our study still suggests that POHD patients carrying muta-
tions ≥60 CAG repeats have distinct characteristics, with signifi-
cantly different regional brain volumes and glucose metabolism,
versus AOHD patients. In POHD, large and unstable CAG
repeats with triplet mosaicism19 and neuron transcriptional dys-
regulation changes20 throughout life21 may cause dysfunction in
different brain regions, affecting clinical variability and severity.
The regional and dynamic variability in cortical dysfunction that
precedes cortical atrophy is potentially a precursor of clinical
manifestation severity in POHD. The hybrid FDG-PET/MRI
combines volumetric and metabolic changes in the same individ-
ual and may represent a valuable tool for monitoring POHD
changes over time.
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Supporting Information
Supporting information may be found in the online version of
this article.
Figure S1. Annualized percentage rate of morphological
changes in the AOHD cohort (averaged from 6 patients) and
individual POHD patients (analyzed individually due to a small n
number and a high clinical and metabolic variability). From left
to right: left lateral, left medial, right medial, and right lateral
views of the cortex; then left lateral, left medial, right medial,
and right lateral views of subcortical structures. Color bars show
annualized percentage changes in morphology (increases in red,
decreases in blue). AOHD, adult-onset Huntington’s disease;
POHD, pediatric-onset Huntington’s disease.
Figure S2. Annualized percentage rate of changes in glucose
uptake in the AOHD cohort (averaged from 6 patients) and indi-
vidual POHD patients (analyzed individually due to a small n
number and a high clinical and metabolic variability). From left
to right: left lateral, left medial, right medial, and right lateral
views of the cortex; then left lateral, left medial, right medial,
and right lateral views of subcortical structures. Color bars show
annualized percentage changes in glucose metabolism (increases
in red, decreases in blue).
Table S1. Demographic and clinical characteristics of the longi-
tudinal cohort (n = 9). Data are reported as median and range.
Higher scores on the TMS (Total Motor Score) indicate more
severe motor impairment, whereas higher sores for TFC (Total
Functional Capacity), IS (Independence Scale), MMSE (Mini-
Mental State Examination), SDMT (Symbol Digit Modality
Test), SVF (Semantic Verbal Fluency), SCN (Stroop Color
Naming), and SWR (Stroop Word Reading) indicate better
functional capacity, independence, or cognitive performance.
Data S1. Supporting information.
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